Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA
نویسندگان
چکیده
OBJECTIVE Functional investigation of novel gene/protein targets associated with adipocyte differentiation or function heavily relies on efficient and accessible tools to manipulate gene expression in adipocytes in vitro. Recent advances in gene-editing technologies such as CRISPR-Cas9 have not only eased gene editing but also greatly facilitated modulation of gene expression without altering the genome. Here, we aimed to develop and validate a competent in vitro adipocyte model of controllable functionality as well as multiplexed gene manipulation in adipocytes, using the CRISPRa "SAM" system and siRNAs to simultaneously overexpress and silence selected genes in the same cell populations. METHODS We introduced a stable expression of dCas9-VP64 and MS2-P65, the core components of the CRIPSRa SAM system, in mesenchymal C3H/10T1/2 cells through viral delivery and used guide RNAs targeting Pparγ2, Prdm16, Zfp423, or Ucp1 to control the expression of key genes involved in adipocyte differentiation and function. We additionally co-transfected mature adipocytes with sgRNA plasmids and siRNA to simultaneously up-regulate and silence selected genes. Quantitative gene expression, oxygen consumption, fluorescence-activated cell sorting and immunocytochemistry served as validation proxies in pre- or mature adipocytes. RESULTS CRISPRa SAM-mediated up-regulation of a key adipogenic gene, Pparγ2, was successfully achieved using selected sgRNAs targeting the Pparγ2 promoter region (i.e. up to 104 fold); this induction was long lasting and sufficient to promote adipogenesis. Furthermore, co-activation of Pparγ2 with either Prdm16 or Zfp423 transcripts drove distinct thermogenic gene expression patterns associated with increased or decreased oxygen consumption, respectively, mimicking typical characteristics of brite/beige or white cell lineages. Lastly, we demonstrated that up-regulation of endogenous genes in mature adipocytes was also easily and efficiently achieved using CRISPRa SAM, here exemplified by targeted Ucp1 overexpression (up to 4 × 103 fold), and that it was compatible with concomitant gene silencing using siRNA, allowing for bidirectional manipulation of gene expression in the same cell populations. CONCLUSIONS We demonstrate that the CRISPRa SAM system can be easily adopted and used to efficiently manipulate gene expression in pre- and mature adipocytes in vitro. Moreover, we describe a novel methodological approach combining the activation of endogenous genes and siRNA-mediated gene silencing, thus providing a powerful tool to functionally decipher genetic factors controlling adipogenesis and adipocyte functions.
منابع مشابه
STUDY OF HMGA2 GENE INHIBITION WITH SPECIFIC SHRNA AND SIRNA AND INVESTIGATION OF CORRESPONDING EFFECTS ON DOWNSTREAM GENE EXPRESSION IN MDA-MB-231 CANCER CELLS: A BIOINFORMATIC AND EXPERIMENTAL STUDY
Background & Aims: The use of siRNA to silence gene expression is increasingly expanding today. The aim of this study is to bioinformatically and experimentally investigate the inhibition of the HMGA2 gene and its corresponding effects on downstream genes expression rate in MDA-MB-231 cancer cell treated by shRNA and siRNA specific to HMGA2. Materials & Methods: To perform this bioinformatic a...
متن کاملDown-Regulation of the ALS3 Gene as a Consequent Effect of RNA-Mediated Silencing of the EFG1 Gene in Candida albicans
Background: The most important virulence factor which plays a central role in Candida albicans pathogenesis is the ability of this yeast to alternate between unicellular yeast and filamentous hyphal forms. Efg1 protein is thought to be the main positive regulating transcription factor, which is responsible for regulating hyphal-specific gene expression under most conditions. ALS3 is one of the ...
متن کاملThe Efficiency of CD40 Down Regulation by siRNA and Antisense ODN: Comparison of Lipofectamine and FuGENE6
Background: Dendritic cells (DCs) are ideal accessory cells in the field of gene therapy. Delivery of DNA and siRNA into mammalian cells is a useful technique in treating various diseases caused by single gene defects. Selective gene silencing by small interfering RNAs (siRNAs) and antisense oligodeoxynucleotides (ODN)s is an efficient method for the manipulation of cellular functions. An effic...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملMetformin and Pioglitazone Reduce Gene Expression of Inflammatory Factors in Insulin Resistant and Hypertrophied Adipocytes
Objective: In obesity, chronic low grade inflammation, created by induction of pro-inflammatory markers, causes adipocyte dysfunction in adipose tissue. Adipocytes dysfunction is associated with various diseases including insulin resistance and obesity. In obesity, inflammatory factors such as osteopontin (OPN), angiopoietin-like protein 2 (Angptl2) and transforming growth factor-β (TGF-β) are...
متن کامل